

PRUEBA TEÓRICA Solución

Problema 3. Vasos comunicantes (10 puntos)

Demuestre que la nueva presión del gas ideal es

3.0 pt

2.0 pt

$$p_i = p_0 + \rho g \left(\frac{3}{5} - \frac{\rho g}{k}\right) \Delta V$$

 $p_i=p_0+\rho g\left(\frac{3}{S}-\frac{\rho g}{k}\right)\Delta V$ Un cambio de volumen $\Delta V>0$ en el gas supone un cambio de altura hacia arriba $2\Delta V/S$ en el recipiente B y $\Delta V/S$ hacia abajo en el recipiente A. Como las presiones deben ser iguales en 2 puntos del líquido a la misma altura, se obtiene

$$p' = p_0 + \rho \left(\frac{2\Delta V}{S} + \frac{\Delta V}{S}\right)g = p_0 + \frac{3\rho g}{S} \Delta V$$

Sin embargo, un aumento de líquido ΔV en B supone un aumento de masa $\rho \Delta V$, por lo que el resorte se estirará $\frac{\rho\Delta Vg}{k}$. Tomando esto en consideración, se obtiene la respuesta

$$p_i = p_0 + \rho g \left(\frac{3}{S} - \frac{\rho g}{k}\right) \Delta V$$

Determine esta nueva constante del resorte, k_{ii} , en términos В. de S, g, y ρ .

Como la presión inicial y final del gas son iguales, usando la respuesta del inciso anterior se obtiene

$$p_0 = p_0 + \rho g \left(\frac{3}{S} - \frac{\rho g}{k_{ii}}\right) \Delta V$$
$$k_{ii} = \frac{\rho S g}{3}$$

Además, determine el calor Q_{ii} que le fue suministrado al gas C. 1.5 pt durante este proceso.

El calor suministrado al gas viene dado por

$$Q_{ii} = c_p nR\Delta T = \frac{5}{2} p_0 \Delta V$$

PRUEBA TEÓRICA Solución

T-3

D. Realice una gráfica p-V de este proceso y determine el calor neto en este proceso, Q_{iii} , en términos de V_0 y p_0 .

3.5 pt

Sea p la presión del gas cuando su volumen es V, para ver más claramente la relación entre la presión y el volumen del gas en este proceso, reescribimos el resultado del inciso (B) como

$$p = p_0 + \rho g \left(\frac{3}{S} - \frac{\rho g}{k}\right) (V - V_0)$$

Se puede ver claramente que la presión y el volumen guardan una relación lineal en este proceso, por lo tanto el diagrama pV es como en la Figura 1.

Ahora, usando la ley de Boyle-Charles, se puede determinar la presión p_f del gas al finalizar el proceso:

$$\frac{p_0 V_o}{T_0} = \frac{p_f \left(\frac{5}{4} V_0\right)}{\frac{15}{16} T_0} \quad \therefore \ p_f = \frac{3}{4} p_0$$

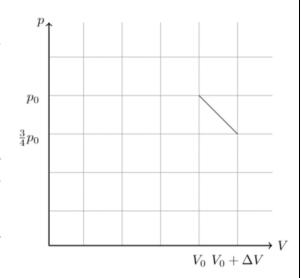


Figura 1. Grafica p-V

El cambio de energía interna ΔU del gas durante este proceso es

$$\Delta U = nc_V \Delta T = \frac{3}{2} nR \left(\frac{15}{16} T_0 - T_0 \right) = -\frac{3}{32} nR T_0 = -\frac{3}{32} p_0 V_0$$

El trabajo hecho por el gas durante este proceso puede ser determinado encontrando el área bajo la curva del diagrama pV, o sea

$$W = \frac{1}{2} \left(p_0 + \frac{3}{4} p_0 \right) \left(\frac{1}{4} V_0 \right) = \frac{7}{32} p_0 V_0$$

Finalmente, usando la primera ley de la termodinámica, se encuentra la cantidad de calor suministrada al gas durante el proceso

$$Q_{ii} = \Delta U + W = -\frac{3}{32}p_0V_0 + \frac{7}{32}p_0V_0 = \frac{1}{8}p_0V_0$$

